on semi-artinian weakly co-semisimple modules

Authors

e. momtahan

abstract

we show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[m]$, is weakly co-semisimple if and only if it is regular in $si[m]$. as a consequence, we observe that every semi-artinian ring is regular in the sense of von neumann if and only if its simple modules are $fp$-injective.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On Semi-artinian Weakly Co-semisimple Modules

We show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[M]$, is weakly co-semisimple if and only if it is regular in $si[M]$. As a consequence, we observe that every semi-artinian ring is regular in the sense of von Neumann if and only if its simple modules are $FP$-injective.

full text

On Minimal Artinian Modules and Minimal Artinian Linear Groups

The paper is devoted to the study of some important types of minimal artinian linear groups. The authors prove that in such classes of groups as hypercentral groups (so also, nilpotent and abelian groups) and FC-groups, minimal artinian linear groups have precisely the same structure as the corresponding irreducible linear groups. 2000 Mathematics Subject Classification. 20E36, 20F28. Let F be ...

full text

On weakly projective and weakly injective modules

The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module M , there exists a module K ∈ σ[M ] such that K ⊕N is weakly injective in σ[M ], for any N ∈ σ[M ]. Similarly, if M is projective and right perfect in σ[M ], then there exists a module K ∈ σ[M ] such that K ⊕ N i...

full text

On $alpha $-semi-Short Modules

We introduce and study the concept of $alpha $-semi short modules.Using this concept we extend some of the basic results of $alpha $-short modules to $alpha $-semi short modules.We observe that if $M$ is an $alpha $-semi short module then the dual perfect dimension of $M$ is $alpha $ or $alpha +1$.%In particular, if a semiprime ring $R$ is $alpha $-semi short as an $R$-module, then its Noetheri...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 37

issue No. 3 2011

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023